PM Chemical Speciation

M.-C. Oliver Chang, Julia Sandoval, Luzviminda Salazar, Paul Rieger

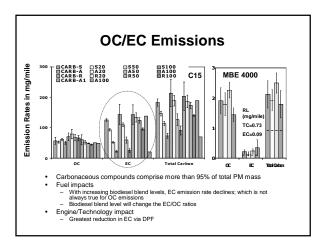
Southern Laboratory Branch, Monitoring and Laboratory Division El Monte

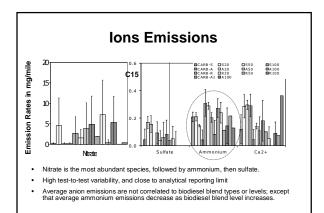
Biodiesel Multimedia Workshop, Dec 8, 2010

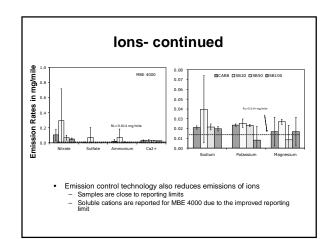
PM Speciation Data Availability

Fuel Blends	Test Vehicle	lons (cation/anion)	Carbon (IMPROVE_A)	Elements (ICP-MS)
CARB Diesel	C15 MBE 4000	SLB/Done SLB/Done	SLB/Done SLB/Done	UWM/Done SLB/finalizing
Soy	C15 MBE 4000	SLB/Done SLB/Done	SLB/Done SLB/Done	UWM/Done SLB/finalizing
Beef tallow	C15	SLB/Done	SLB/Done	
Renewable	C15	SLB/Done	SLB/Done	

- Test cycle/duration:
 UDDSx2 for C15
 UDDSx2 x3 for MBE 4000


Estimated Reporting Limit


	Nitrate	Sulfate	Ammonia (all cations)	Elemental carbon	Total carbon
C15	0.07	0.07	0.07	0.28	2.24
MBE4000	0.014	0.014	0.014	0.092	0.733


- Laboratory reporting limited estimated in mg/mile
- Increased sample air volume
- Data quality assessment (blanks)
 - Data quality assessment (blanks)

 Blanks for carbon are all below reporting limit; all samples are above reporting limit

 Most blanks for ions are below reporting limit

Trace Elements - C15 ¢15 ■Cr52(MR) Most abundant species include: P(31), Ca(42), Ca(44), Zn(66) ≈ average 200 to 450 µg/mile; followed by Na, Mg, Al, and Fe at an order of magnitude lower Little to no correlations between element emissions rates and biodiesel blend levels/types

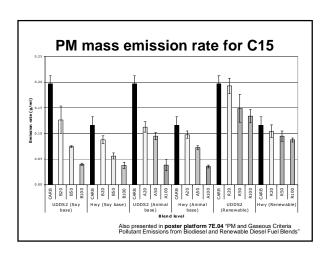
Summary

• Fuel Effects

- Did not observe any unintended consequences for PM at different biofuel blend levels or with different engine technologies;
 PM mass reduction primarily due to the EC reduction
 Ammonia emission decreases as biofuel blend level increases.

- Emission Control
 Primarily due to removal of EC via DPF
 Reduction benefits are for all species

- PM chemical profile
 Elemental carbon as the major compound without emission control and organic carbon with control lecthonlogy
 Charge balance for ions suggests collection of acid droplets
 Sampling bias may become significant for post 2007 engines


Backup Slides

Baseline PM mass Emission Rate

Project/Reports	Model Year	UDDS	Cruise-50mph
CRC E55/E59	All 1975-2003+	1.79 ± 0.13	1.11 ± 0.06
	1999 – 2002	1.04 ± 1.30	0.52 ± 0.79
	2003 +	0.50 ± 0.47	0.39 ± 0.49
NREL 2006	2003 Coach Motor	0.254 ± 0.022	N.A.
ARB Caterpillar C15	2001	0.197 ± 0.015	0.116 ± 0.016

Emission rate in g/mile
 All data from HHDDT chassis dynamometer testing

Vehicle weight 56,000lbs class, except NREL at 23,500lbs

